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Abstract-The analytical solutions for coupled at boundary diffusion processes in the entrance region 
of channel flow are presented. An algorithm for computing the resulting eigenvalue problem and computer 
program CUPFLOW are developed for studying a class of coupled problems to which belong the ones 

discussed in [l-7]. Some illustrative examples are also included. 

NOMENCLATURE 

prescribed constants; 
prescribed functions; 

2. ANALYSIS 

The differential equations governing the mass trans- 
fer in an entrance concurrent flow may be written in 
a general form 

1,2,3 ,..., co; 
1 or2; 
dimensionless radial and axial 

(1) 

distances; forn=1,2;~.=Oor1;0~~~l;q>Oandk,(l)=1. 
dimensionless potentials; The initial and boundary conditions are given by 
eigenvalues; 
eigenfunctions; 

@A<, 0) = fn (2) 

factor of the form; a&(0, ?) ---Z 
functions defined by equations (27) at 

o 
(3) 

and (28). 
L,l~1(1,rl)+Lnz~2(1,?) 

1. INTRODUCTION +L ww7)+L ae2u,tl) 

THE DESIGN of a separating process is usually based 
n37 n4- = 0 

a( 
(4) 

on theoretical predictions, which are derived from the 
analytical mass transfer solutions. The distributions of 

where Lii = Liz = 0 and Li3Li&iL22 > 0. 

concentrations in gas-liquid or liquid-liquid flows have 
In equation (1) w,(c) are the normalized velocities in 

been found in [l-4]. The mass transfer from one 
direction therefore we have 

medium to another leads to the pure diffusion equations 
coupled only at boundary conditions. (lYn+ 1) 

s 
’ <rnw,(r)d5 = 1. (5) 

Similar problems appear in the study of the heat- 0 

transfer coefficients in concurrent flow double pipe heat 
exchangers [5,6], simultaneous heat and mass transfer 

The solutions of equations (l)-(4) can be easily 

in internal gasflows in a duct whose walls are coated 
obtained as a very special case from the general theory 

with a sublimable material [7] and elsewhere. 
presented in [8]. The results are 

In a recent paper [8], one of the authors presented 
the general solution of the diffusion equations coupled 

e,(5,q) = (-l~+l~~,+, 

through general boundary conditions, including the (r2+i)L13fl+(r~+1)L14f2~2 
problems in the reference mentioned so far as very ’ (rz+i)L13L22-(rl+i)L14L210* - 
special cases. The main difficulty in the application of 
the solutions given in [8] is the tackling of the g) 
resulting eigenvalue problem, which is not of the ,c x z 

j1 onf.tibi(l) 

conventional type. 
In this paper is described the algorithm for com- 

‘=I zl ,(~~)~=~~i~i(l)-~~)~=~~~“i(l)~ 

puting two Sturn-Liouville equations coupled at the 
common boundary. Using this algorithm a computer (6) 

program CUPFLOW was compiled which permits the 

X ~$.i(~)e-P'n 
I 

study of a class of coupled problems to which belong where 

the ones discussed in [l-7]. cl= L13L21, 62 = -L14L22 
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and pi are eigenvalues of the two-region Sturm- 
Liouville problem 

{tr+,(<)l&i(<))’ + &,lz(n-i) I-., 5 wn(5Mni(0 = 0 (7) 

*hi(o) = 0 (8) 

~,l~li(l)+~“2~2i(l)+~n31Cl;i(1)+~,4~~i(l)=0. (9) 

Equations (6) are derived from the general solutions 
given in [8] assuming that 

Of importance to the application of solutions (6) is 

the numerical calculation of the eigenvalues pi and 
eigenfunctions $“i(<) from (7) to (9). In order to find 

them it is appropriate to introduce new variables 
y4n-2(5) and y4,- 3(<). Through the substitutions 

tinit = ktY4n-2,i(t), 5’“h(t)$Ai(5) = AnY4n-3,dS) t1 1) 

the system (7) is reduced to 

Ykn-3,i(t) = -~ZW2’“-“5’~Wn(5)Y4n-2,i(5) (l2) 

Ykn-Z,i(t) = Y4n-3,i(SM(~rnk.(r)). (13) 

These equations (12))(13) will be integrated numeri- 

cally with conditions 

Y4n-3,i(O) = Ot Y4n-2,iCO) = l (14) 

and therefore conditions (8) are automatically satisfied. 

Substituting (12) and (13) in boundary conditions (9) 
we come to the expressions 

~l~13Yli(1)+~2~14Y5i(1)= O (15) 

~l{~21Y2i(l)fL23Yli(I)j. 

+ A2iL22Yli(l)+L24Y5i(l)} = 0. (16) 

The systems obtained are homogeneous; then it 

follows 

~13~22Y6i(l)/Y5i(l)-~14~21Y2i(1)/Yli(1) 

+xh3~!a24-L14L23 = 0. (17) 

Further we define the variables 

y4 ,(4) = aY4n-2,i(5) aY4n-3,i(O 

“,L 
a/l ’ 

Y4n-l,i(t) = 
d/l . 

(18) 

Now equations (12) and (13) after differentiation in 
p become 

yk”-i,i(t) = -/AiW2’“~1’~r”W~(~) 

x {PiY4n,i(5)+2Y4n-2,i(f)} (19) 

Ykn,i(S) = Y4n- 1 ,i(5Mtrnk(0). (20) 

Equations (19)-(20) will be integrated numerically 
at conditions 

Y4n-l.i(O) = O9 Y4n,i(O) = 0 (21) 

so as to satisfy equations (10). Thus we have 

W.(l) (_-I afi ,i=w, 
= An.Y4n,i(l) 

a**.(l) ( > atap /t=,,, = AY4n-l,i(l). 

(22) 
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Using equations (11) (18) and standard mathematical 
techniques the solutions (6) may be rearranged as 

O”(5,S) = (-l)“+‘L2,3-n 

o-2+ lK13fl -to-l + 1)L14f2W2 ___ ._~ 

x i DiY9-4n.i(l)Y4n-2,i(5)e~“‘rl (23) 
i=1 

where 

If we use an approximation in which the actual 
velocity profile is replaced by the average (plug flow 

case), then w,(t) = 1 and systems (12)-(13) have exact 
analytical solutions 

Y4n-Z,i(U = W~,(PiW”-15) (25) 

Y4”-3,i(t) = -~iw”-‘~r”Vr”(~iW”-lr). (26) 

The properties of the functions 

cc (- iy’<*j 

Wrm(4) = jZ0 (2j) ! !(r, + 2j - 1) ! ! (27) 

(28) 

are described in detail in the monograph [9] and 
partially in the Appendix of [lo]. For r, = 0 or 1 the 
series (27) and (28) define the following well-known 
functions. 

We(x) = cos x, WI(X) = Jo(x), 

V,(x) = sin x, V,(x) = Jr(x). 
(29) 

Using (25) and (26) equations (17) are reduced to 

Ll4LZl w,,(~)/~,,(~)--l3~22~~~(~~)/C~~r~(~~)l 

f/L(L13L24-L14L23) = 0. (30) 

The positive nor-zero roots of equation (30) give the 

eigenvalues pi. 
Introducing into solutions (23) the new y(c) variables 

we obtain 

M5,v) = (--1)“+‘L2,3-” 

(r2+i)~13fi+(rl+i)~14f20* 

’ (r2+i)~13~22-(rl+w14~21~2 

+(- 1)“+‘Ll,s-n(L21”fl fL22f2) 

m 

X 1 D~~iW2-“V~,_“(~iWz-“) 

i=l 
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2. Calculate in the same way the eigenvalues p?* 
solving numerically equations (12H13) for n = 2 at the 
condition (14), so that the equation ysi(l) = 0 be 
satisfied. The calculation is started with 

where 

h,bw) +(l-~Z)~r,(PiW)- II PiW 
(32) 

3. ALGORITHM FOR SOLVING THE PROBLEM 

The determination of the potentials &(<,Q-) from 
equation (31) is easily performed if the roots of the 
transcendental equation (30) are calculated. Similarly, 
for the solution of (23) it is necessary to calculate the 
eigenvalues pi through numerical integration of the 
system (12)-(13) with the conditions (14) so that 
condition (17) is satisfied. 

The calculation of pi is considerably facilitated if 
the intervals, where the eigenvalues are to be found, 
are known. Let us consider equation (30) for the case 
of parallel planes Fr = l-2 = 0, and L13Lzz = 1, 
Lr4L~r = 1,L13Lz4-Lr4L23 = 0.5,~ = 1.6. Figure 1 
shows the functions zi = cotan p, z2 = - (l/o)cotanwp 
and z3 = 0.5~. The roots of equation (30) are deter- 
mined from the points of intersection of the functions 
zi+z3 and 22. When L14Lz1 and L13Lz2 are of the 
same signs, even if their values are different from 1, 
the roots of equation (30) lie between two subsequent 
roots of the equations 

sinp = 0 and sin(op) = 0. (33) 

We have to note that if for some value of ~1 the 
roots of equation (33) incidentally coincide then this 
value of p is a root of equation (30) too. 

Having in mind that the behavior of the functions 
pyzi( 1)/y r i( 1) and pybi( l)/ysi( 1) is similar to that of the 
cotan p we can draw the conclusion that every root of 
equation (17) lies between two subsequent roots of the 
equations: 

yri(l) = 0 and ysi(l) = 0. (34) 

It is obvious that equations (34) define the eigen- 
values of the classical Sturm-Liouville equation; 
asymptotical formulae are derived for them in [ll]. 

On the basis of the consideration given above the 
following algorithm was successfully applied for the 
calculation of the eigenvalues of equations (12)-(13) 
with the conditions (14)-(17): 

1. Calculate the eigenvalues PT by numerical inte- 
gration (Runge-Kutta method) of equations (12)~(13) 
for n = 1 with the boundary condition (14) so that 
with Newton’s iterative method the equation yri(l) = 0 
also be satisfied. The calculation is started with the 
initial approximation 

and 2 iterations are preformed. 

and also 2 iterations are performed. 
3. The eigenvalues p: and pr* so obtained are 

arranged according to their values and in this way the 
intervals, where the eigenvalues pi of equation (17) lie, 
are determined. 

4. The eigenvalues pi and eigenfunctions y4n- z,i(l) 
and y4”- 3,i({) are determined through direct numerical 
solution of equations (12)-(13) at condition (14) using 
the method of successive bisection, so that equation 
(17) is identically satisfied. 

5. The functions ybn,i(l) and ybn_ r,i(<) are calculated 
numerically from equations (19)-(20) at conditions (21). 

6. Using formulae (23) and (24) f&(5, q) are calculated. 
On the basis of this algorithm a computer program 

CUPFLOW was compiled and the examples con- 
sidered in [l-7] were recalculated. 

4. ILLUSTRATIVE RESULTS 

As a first example let us consider the hydro- 
dynamically developed flow of a gas in a duct whose 
walls are coated with a sublimable material. The 
entering gas flow contains vapours of the sublimable 
material in the amount less than the saturation value 
corresponding to the temperature and the total 
pressure. In addition the latent heat of sublimation is 
supplied to the wall by the gas itself. The full formu- 
lation of the problem is given in [7] and leads to 
the equations : 

et, 0) = 1, (P(4,O) = 1 (38) 

aw.4 d = o 

at ’ 
adO, 4) _ o 

at 
L au, d ad4 d 

at -----=o, KQ(l,‘I)+cp(l,7I)=O (40) 
X 

where: u(r) = dimensionless velocity, 8 = dimension- 
less temperature, cp = mass fraction variable, L and 
K = &/cp are dimensionless numbers defined in [7]. 

This problem is solved in [7] for u(t) = 1. To obtain 
the solution from equations (37)-(40) it is sufficient 
to let: co2 = L, rl = r, = 0, kl(5) = k2({) = 1, fl = 
f2 = 1, L13 =*L, Li4 = -1, Lzl = K, Lz2 = 1, Lzj = 
L*4 = 0. 

The distribution of the temperature and the mass 
fraction are calculated using 10 eigenvalues. In Fig. 2 
are plotted some typical results for: L = 0.81, K = 0.1 
and u(t) = $( 1 - t2). 

As a second example we consider concurrent mass 
transfer between fluid and gas flowing separately in a 
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, 

FIG. 1. 
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9 

FIG. 2. 

parallel-plate channel. This problem is defined in [3,4] 
through the following equations : 

c,(L 0) = 1, 45,O) = 0 (42) 

9 

FIG. 3. 

where the dimensionless parameters are: cl = concen- 
tration in gas flow, c2 = concentration in the liquid, 
p’ and E are numbers defined in [3,4]. 

Dimensionless velocities for the laminar flow case 
are [3,4]: 

Ul(S) = S(1 -C2), uz(5) = Ml -5). (45) 

The problem defined by equations (41)-(45) is also 
a special case of the problem studied here: r1 = l-2 = 0, 
kl(t) = kz(4) = 1, 0’ = b2, fi = 0, j-2 = 1, L13 = P’E, 
L14 = 1, Lzl = -1, Lz2 = 1, Lz3 = Lz4 = 0. In Fig. 3 
is plotted one of the examples calculated with E = 0.5 
and p2 = 0.2. 

As a last example let us consider the heat transfer 

j 678901 2 3 4 56789 

? 
FIG. 5. 
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in an exchanger which consists of two concentric 

circular pipes with fluids concurrently flowing through 
the annular space and the central tube. The fluids enter 
with different temperatures, exchanging heat through 
the common wall. This problem is studied in [5,6] 
and leads to 

557 

In the last Fig, 5 is presented the same example 
for the Iaminar flow case: ut(<) = 2(1-5’) and 

a&) = 650 - 5). 

where: O1 and O2 are the temperatures in the central 
tube and the annular space respectively, r = 0 or 1 
for a parallel plane or a tube exchanger, K, H and K, 
are dimensionless numbers defined in [5,6] and called 
fluid thermal resistance ratio, heat capacity flow rate 
ratio and wall thermal resistance ratio respectively. 

To obtain the solution it is necessary to assume that: 
ki({)=kz(O=l, f1=0, jz=l, c-02=(KHIT-k1), 
rl = I-, r, = 0, L1J = K, 8514 = 1, LZl = 1, LZJ = - 1, 
L23 = K,, L2‘$ = 0. 

In Fig. 4 are shown the temperature distribution 

for K = 0.1, H = 0.5, K, = 0, F = 0 and the plug Row 
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TRANSFERT DE CHALEUR ET DE MASSE COUPLES A LA FRONTIERE DANS LA 
REGION D’ETABLISSEMENT DUN ECOULEMENT PARALLELE 

R&sum&-On prkente des solutions analytiques des processus de diffusion couplis aux frontiires dans 
la region d’bablissement dun ecoulement en canal. Un algorithme est developpe pour r&oudre le 
problkne de valeurs propres resultant, ainsi qu’une procedure numerique CUPFLOW, afin d’etudier 
une classe de problknes couples a laquelle appartiennent ceux discutb dans [l-7). Quelques exemples 

sont aussi present&. 

GEKOPPELTER WARME- UND STOFFUBERGANG IM EINLAUFBEREICH 
GLEICHGERICHTETER STRGMUNGEN 

Zusammenfassung-Es werden analytische Ltisungen angegeben fur Diffusionsprozesse in hydro- 
dynamisch nicht ausgebildeter Kanalstriimung mit Kopplung im Grenzbereich. Zur Berechnung der 
resultierenden Eigenwerte ist ein Algorithmus und ein Computerprogramm CUPFLOW angegeben. Eine 
Reihe von Problemen der genannten Art aus der Literatur wurden untersucht. Anschauliche Beispiele 

werden ebenfalls wiedergegeben. 

COBMECTHLIH MACCO- HJIH TEHJIOOBMEH HA FPAHMHE 
HPH CHYTHOM TEYEHHH HA BXOAE I3 KAHAJI 

&uoTalRfn - B JtOKjlaZle ~~~~~eHb1 aH~~T~~~He peureHHI COBMeCTHbIX ~~y3HO~H~ 
npoueccoli Iia Ha?ianbHoM ynacTKe KaHa.aa. Anr wccnexoaannrr xnacca conMecTrzbxx 3aAa-i (K HHM 
OTHOCHTCII 3anava, paccMarpHsaeMaR B [l-7]), pa3pa6oTaw anrop~@u ,rrnlt BbNHCneHHR pe3yllb- 
THpyEOIQHX 3aAaq 0 CO6CTBeHHbIX 3HaYeHHIIX H IIpOrpaMMa &UPFLOWn AJISI BbIYEiCJIliTeJIbHOti 

MaLUHHbI, B LIOKJIaHeC0LIeplRHTCS-i HeCKOJfbKO DORCHEiTeJIbHbIX IIpEiMepOB. 


