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Abstract—The analytical solutions for coupled at boundary diffusion processes in the entrance region

of channel flow are presented. An algorithm for computing the resulting eigenvalue problem and computer

program CUPFLOW are developed for studying a class of coupled problems to which belong the ones
discussed in [1-7]. Some illustrative examples are also included.

NOMENCLATURE

Lnla Ln2 s Ln3s

Lns, fy,»,  prescribed constants;

kn(E), wa(6), prescribed functions;

i, 1,2,3,...,00;

n, lor2;

& n, dimensionless radial and axial
distances;

0:(S, 1), dimensionless potentials;

His eigenvalues;

Yni(§), eigenfunctions;

L., factor of the form;

Wr,(6), Vi, (£), functions defined by equations (27)
and (28).

1. INTRODUCTION

THE DESIGN of a separating process is usually based
on theoretical predictions, which are derived from the
analytical mass transfer solutions. The distributions of
concentrations in gas-liquid or liquid-liquid flows have
been found in [1-4]. The mass transfer from one
medium to another leads to the pure diffusion equations
coupled only at boundary conditions.

Similar problems appear in the study of the heat-
transfer coefficients in concurrent flow double pipe heat
exchangers [5, 6], simultaneous heat and mass transfer
in internal gasflows in a duct whose walls are coated
with a sublimable material [7] and elsewhere.

In a recent paper {8], one of the authors presented
the general solution of the diffusion equations coupled
through general boundary conditions, including the
problems in the reference mentioned so far as very
special cases. The main difficulty in the application of
the solutions given in [8] is the tackling of the
resulting eigenvalue problem, which is not of the
conventional type.

In this paper is described the algorithm for com-
puting two Sturm—Liouville equations coupled at the
common boundary. Using this algorithm a computer
program CUPFLOW was compiled which permits the
study of a class of coupled problems to which belong
the ones discussed in [1-7].
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2. ANALYSIS
The differential equations governing the mass trans-
fer in an entrance concurrent flow may be written in
a general form

\

- 00,(Em) 0 6a(&, 1)
2(n-1) Tn _ '

forn=1,2;T,=00r1;0<é<;n20and k,(1) = 1.
The initial and boundary conditions are given by

0.(¢,0) = fa 2
064(0,7)
% =0 3)
L. 01(1,m)+La262(1, 1)
20,1, 80,(1,
+Lns la(: Mol za(g N_o @

where Lu = le =0 and L13L14L21L22 2 0.
In equation (1) w,(&) are the normalized velocities in
direction therefore we have

0

+1) f Erwa(8)de = 1. )

The solutions of equations (1)-(4) can be easily
obtained as a very special case from the general theory
presented in [8]. The results are

Bn(é’ r’) = (_1)"+1L2,3-n
y (F2+1)L13f1+(F1+1)L14f2w2 _
T2+ 1)L1sLaa — (T +1)Lis Ly 0?
2
@ Z G’If;ll//;u(l)
& T 7o = (D)
"Zl 0n{< ou >;~'=ui‘/["i(1)_( o&op >u=ua¢"i(1)}

<2 Yul(E)e ™ 1 (6)
Hi

where

01 = LisLy;, 2= —Liala;
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and p; are eigenvalues of the two-region Sturm-
Liouville problem

[ETkW(EWni O} + pf® ™ DEw (EWrm(E) = 0 (7)
Ym(0) =0 (8)
Loy tb1if(D) + Loy 2i(1) + Lasp'1i(1) + Lyab2(1) = 0. (9)

Equations (6) are derived from the general solutions
given in [8] assuming that
(6%(0)

W) _
( ou )" oEdu )‘0 (19

Of importance to the application of solutions (6) is
the numerical calculation of the eigenvalues y; and
eigenfunctions ¥,,(¢) from (7) to (9). In order to find
them it is appropriate to introduce new variables
Yan-2(&) and y4,- 3(¢). Through the substitutions

Yni(€) = Anyan-2,i(8) Eka(OWni() = Anyan-3.4() (11)
the system (7) is reduced to
Van-3.4(&) = — pf@? " VEWa(E)Yan-2,4(£)
Van-2.4E) = Yan—3,{(ENE kn(E)).

These equations (12)—(13) will be integrated numeri-
cally with conditions
Yan-3,:{0) =0, Yan-2,i(0) = 1

and therefore conditions (8) are automatically satisfied.
Substituting (12) and (13) in boundary conditions (9)
we come to the expressions

A1 Lizy(1)+ Az L1aysi(1) =0
A1{L21y2:(1)+ Laa y1:(1)}
+ A{Lazy1i(1)+ L2aysi(1)} = 0. (16)

The systems obtained are homogeneous; then it
follows

LizLaayei1)/ysi{l) = LiaLa1 y2:(1)/y1d)

(12)
(13)

(14)

(15)

+Li3Lya—LiaLl;3 =0, (17)
Further we define the variables
¢ n'.ié 0 n—,ié)
ponile) = Loz = D) g
du du

Now equations (12) and (13) after differentiation in
u become

Van-1,48) = — i~ VEw, (&)
X {uiyu.i(é) + 2y4an- 2,i(5)}
Vani(€) = y4n—1,i(é)/(ér"kn(é))~

Equations (19)—(20) will be integrated numerically
at conditions

(19)
(20)

Van-1.00) =0, p4ni(0)=0 @1
s0 as to satisfy equations (10). Thus we have
(1
(l_(‘)> = Any4n,i(1)
a” w= g
(22)

P Ya(l) _
(W)wu. = AnYan-1,{1).

Usingequations(11),(18) and standard mathematical
techniques the solutions (6) may be rearranged as

OuE,m =(—1)"" L2 3-n
(To+ DLy f1 + (T + DLya fz07 i
(Ty+1)Ly3Laz —(Ty+ D) L1s Loy 0
+(=1)"Ly,s-n(L21 f1+L22 f2)

% S Deyo-amilDyan-2.i(&e 1 (23)
i=1

where
yai(l) ya:(1)
y2:(1) yu(1)
yail) y2(1)|] !
24
yeill) ,VSi(l)} (24

2
D;= ;)m(l)}’s"(l){LMsz y&(1)

1

~Ly3Layh(l)

If we use an approximation in which the actual
velocity profile is replaced by the average (plug flow
case), then w,(&) =1 and systems (12)—(13) have exact
analytical solutions

Yan-2,4(8) = Wr (mo" ™ '¢) (25)
Yan-3,i(8) = =" Ve (" 1E). (26)
The properties of the functions

o (—1y¢%
W= L onmrz-1h @

© _1yE2it
(=% - U e8)

J

o 2) T+ 2j+ 1!

I

are described in detail in the monograph [9] and
partially in the Appendix of [10]. For I, = 0 or 1 the
series (27) and (28) define the following well-known
functions.

Wi(x) = Jolx),

Vi(x) = J1(x).

Wolx) = c?s X, 29)
Vo(x) = sin x,

Using (25) and (26) equations (17) are reduced to

Lya Loy Wr ()/Vr (1) = L3 Lao Wr, (uw)/[ 0V, (uw)]
+ulLisLza—LiaL;3)=0. (30)

The positive nonzero roots of equation (30) give the
eigenvalues y;.

Introducing into solutions (23) the new y(&) variables
we obtain

B.(&m = (—=1)""'Lz 54
y T2+ DLys fi+ i+ DLia fr0?
(Ta+1)Ly3Ly2 — (T + DLiaLy10®
+(= "Ly s_w{La1 f1+ L2z f3)

x Z Dip® Ve, (piw® ")

i=1

X Wr, (" 1E)e~ " (31)
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where

Ve (i) Ve, (i)
Hi Hiw

D=2 {L14L21 V&, (uiw)

« [Wﬁ(m) VR + —I‘l)Wr,(ui)VL;f‘i) J}

i

—LisLs Vrgl(ui)[Wrzz(mw) + Vi (o)

+(1—r2)wr2(uiw)~vf—l—9jliﬂ)}}. (32)

1

3. ALGORITHM FOR SOLVING THE PROBLEM

The determination of the potentials 6,(¢,%) from
equation (31) is easily performed if the roots of the
transcendental equation (30) are calculated. Similarly,
for the solution of (23) it is necessary to calculate the
eigenvalues y; through numerical integration of the
system (12)-(13) with the conditions (14) so that
condition (17) is satisfied.

The calculation of y; is considerably facilitated if
the intervals, where the eigenvalues are to be found,
are known. Let us consider equation (30) for the case
of parallel planes I''=1,=0, and L;3L,; =1,
L14L21 = 1, L13L24—L14L23 = 05,w = 1.6. Figure 1
shows the functions z, = cotan i, z; = — (1/w)cotan wy
and z3 = 0.5 u. The roots of equation (30) are deter-
mined from the points of intersection of the functions
z1+2z3 and z;. When L,4L;, and L,3L,; are of the
same signs, even if their values are different from 1,
the roots of equation (30) lie between two subsequent
roots of the equations

sinpg=0 and sin(wp)=0. (33)

We have to note that if for some value of u the
roots of equation (33) incidentally coincide then this
value of u is a root of equation (30) too.

Having in mind that the behavior of the functions
uy2i(1)/y1:(1) and uyei(1)/ysi(1) is similar to that of the
cotan u we can draw the conclusion that every root of
equation (17) lies between two subsequent roots of the
equations:

yu(l) =0 and y5,(1) =0. (34)

1t is obvious that equations (34) define the eigen-
values of the classical Sturm-Liouville equation;
asymptotical formulae are derived for them in [11].

On the basis of the consideration given above the
following algorithm was successfully applied for the
calculation of the eigenvalues of equations (12)-(13)
with the conditions (14)-(17):

1. Calculate the eigenvalues pu¥ by numerical inte-
gration (Runge-Kutta method) of equations (12)-(13)
for n =1 with the boundary condition (14), so that
with Newton’s iterative method the equation y;;(1) =0
also be satisfied. The calculation is started with the
initial approximation

1
ut = n<i+ ! +1;FI>/L VIwi @Yk (©]dE (33)

and 2 iterations are preformed.

2. Calculate in the same way the eigenvalues p**
solving numerically equations (12}{13)for n = 2 at the
condition (14), so that the equation ysi(1)=0 be
satisfied. The calculation is started with

r 1
= g(#*é ) / L JIma@ka(]deE (36)

and also 2 iterations are performed.

3. The eigenvalues pf and p}* so obtained are
arranged according to their values and in this way the
intervals, where the eigenvalues y; of equation (17) lie,
are determined.

4. The eigenvalues y; and eigenfunctions yan-2,:(&)
and y4a-3,:(£) are determined through direct numerical
solution of equations (12)—(13) at condition (14) using
the method of successive bisection, so that equation
(17) is identically satisfied.

5. The functions y4, (&) and ya4,-1,,(&) are calculated
numerically from equations (19)—(20) at conditions (21).

6. Usingformulae (23) and (24) 6,(¢, n) are calculated.

On the basis of this algorithm a computer program
CUPFLOW was compiled and the examples con-
sidered in [ 1-7] were recalculated.

4. ILLUSTRATIVE RESULTS

As a first example let us consider the hydro-
dynamically developed flow of a gas in a duct whose
walls are coated with a sublimable material. The
entering gas flow contains vapours of the sublimable
material in the amount less than the saturation value
corresponding to the temperature and the total
pressure. In addition the latent heat of sublimation is
supplied to the wall by the gas itself. The full formu-
lation of the problem is given in [7] and leads to
the equations:

o0(&, n) %0, ) dp(&,m) ol n)
“(5)7 = —052—’ u(&) on = e (37)
0 0)=1, @¢0)=1 (38)
300, 9p0.n)
=0 =0 (39)
LOm _dethm o o, n+o(ln)=0 (40)

0¢ o¢

where: u(¢) = dimensionless velocity, # = dimension-
less temperature, ¢ = mass fraction variable, L and
K = als/c, are dimensionless numbers defined in [7].

This problem is solved in [7] for u(¢) = 1. To obtain
the solution from equations (37)—(40) it is sufficient
tolet: w*=L I1=0=0, k(& =ko() =1, f1 =
fr=1,Lis =L Lia=-1Ly =K Lyp=1, Las =
L24 =0.

The distribution of the temperature and the mass
fraction are calculated using 10 eigenvalues. In Fig. 2
are plotted some typical results for: L = 081, K = 0.1
and u(¢) = 3(1-&%).

As a second example we consider concurrent mass
transfer between fluid and gas flowing separately in a
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parallel-plate channel. This problem is defined in [3,4]
through the following equations:

o« 6C1(§7 ']) _ azcl(éj '1)

2 —_—
B u1(§) 6?] - aéz ’ (41)
® dea&m)  Pealom)
W T T
Cl(é; 0) = 15 cl(éa O) = 0 (42)
c10,n) dc2(0,1)
ST =0 S0 @3)
Pl g e P2 2o, it —catln =0 @4
& o¢

where the dimensionless parameters are: ¢; = concen-
tration in gas flow, ¢, = concentration in the liquid,
B? and ¢ are numbers defined in 3, 4].

Dimensionless velocities for the laminar flow case
are [3,4]:

ui(€) = 3187, ux(d) =21 -4 (45)

The problem defined by equations (41)—(45) is also
a special case of the problem studied here: I'; =T, =0,
ki@ =ko(@) =1, @ =P f1=0, fo=1, Lz =,
L14 = 1, Lzl = —’1, Lzz = 1, L23 = L24 =0 In Flg 3
is plotted one of the examples calculated with ¢ = 0.5
and f? = 0.2.

As a last example let us consider the heat transfer

0 §=0-0
C oo
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in an exchanger which consists of two concentric
circular pipes with fluids concurrently flowing through
the annular space and the central tube. The fluids enter
with different temperatures, exchanging heat through
the common wall. This problem is studied in [5,6]
and leads to

0.5 0. 00,
uy e ) -:[ér————l(f ’“],
7 lild oL 46)
KH o 20Em _0En)
T+1Y " T a2
(50 =0, 6,(£0)=1 47
86:{0,n) 06,200, 1)
=0 TP (48)
g 20l alln)
oL o0&
o0& n) @)
Kwégg,’—"wlu, M—02(L,n) =0

where: 8, and §, are the temperatures in the central
tube and the annular space respectively, I'=0 or 1
for a parallel plane or a tube exchanger, K, H and K,,
are dimensionless numbers defined in [5, 6] and called
fluid thermal resistance ratio, heat capacity flow rate
ratio and wall thermal resistance ratio respectively.

To obtain the solution it is necessary to assume that:
ki@ =k =1, f1=0, fa=1 o*=(KHT+1)
I"1=1",l"230, L13=K,L14=1,L2‘=1,L23= *‘1,
Lys =Ky, Lza=0.

In Fig. 4 are shown the temperature distribution
for K=0.1,H =05, K, =0,T =0 and the plug flow
case: uy(f) = uaf) = 1.

In the last Fig. 5 is presented the same example
for the laminar flow case: u {(&)=2(1—-¢% and

uz(§) = 6£(1-&).
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TRANSFERT DE CHALEUR ET DE MASSE COUPLES A LA FRONTIERE DANS LA
REGION D’ETABLISSEMENT D'UN ECOULEMENT PARALLELE

Résumé—On présente des solutions analytiques des processus de diffusion couplés aux frontiéres dans

la région d’établissement d’un écoulement en canal. Un algorithme est développé pour résoudre le

probléme de valeurs propres résultant, ainsi qu'une procédure numérique CUPFLOW, afin d’étudier

une classe de problémes couplés a laquelle appartiennent ceux discutés dans [1-7). Quelques exemples
sont aussi présentés.

GEKOPPELTER WARME- UND STOFFUBERGANG IM EINLAUFBEREICH
GLEICHGERICHTETER STROMUNGEN

Zusammenfassung—Es werden analytische Losungen angegeben fiir Diffusionsprozesse in hydro-

dynamisch nicht ausgebildeter Kanalstrémung mit Kopplung im Grenzbereich. Zur Berechnung der

resultierenden Eigenwerte ist ein Algorithmus und ein Computerprogramm CUPFLOW angegeben. Eine

Reihe von Problemen der genannten Art aus der Literatur wurden untersucht. Anschauliche Beispiele
werden ebenfalls wiedergegeben.

COBMECTHBIM MACCO- WM TEMJIOOBMEH HA TPAHULIE
PY CITIYTHOM TEYEHHW HA BXOJE B KAHAJI

Amnoramus — B poxnanse npencrasiieHs! aHAMMTHYECKHE DEUIEHHS COBMECTHBIX nabdy3HOHRBIX

HOPOLECCOB HAa HAYANBHOM YYacTKe KaHana. JInsa HccrenoBaHus Kacca COBMECTHBIX 3azad (K HAM

OTHOCHTCA 3afava, paccmarpusaeMas s [1-7]), pa3paboTaHel anropudm I8 BLHIMHCIECHHAS PE3yilh~

THPYHOUIHX 3aJa4% 0 cOGCTBEHHBIX 3HaYeHMsX W mporpaMMa «CUPFLOWY anis BEMHCIMTENLHON
MAIIUHEL B OOKIane COOepXHUTCH HECKOBKO NOSCHHTENEHEIX IPHMEPOB,



